Multimodal User Interfacesin the Open Agent Architecture

DouglasB. Moran
Adam J. Cheyer
LucE. Julia
David L. Martin
SRI International
333 Ravenswood Avenue
Menlo Park CA 94025 USA
+1 415859 6486

{moran,cheyer.julia,martin} @ai.sri.com

ABSTRACT

The design and development of the Open Agent Architecture
(OAA)! system has focused on providing access to agent-
based applications through an intelligent, cooperative, dis-
tributed, and multimodal agent-based user interfaces. The
current multimodal interface supports a mix of spoken lan-
guage, handwriting and gesture, and is adaptable to the user’s
preferences, resources and environment. Only the primary
user interface agents need run on the local computer, thereby
simplifying the task of using a range of applications from a
variety of platforms, especially low-powered computers such
as Personal Digital Assistants (PDAS). An important consid-
eration in the design of the OAA was to facilitate mix-and-
match: to facilitate the reuse of agents in new and unantici-
pated applications, and to support rapid prototyping by facil-
itating the replacement of agents by better versions.

The utility of the agents and tools developed as part of this
ongoing research project has been demonstrated by their use
as infrastructure in unrelated projects.

Keywords: agent architecture, multimodal, speech, gesture,
handwriting, natural language

INTRODUCTION

A major component of our research on multiagent systems
is in the user interface to large communities of agents. We
have developed agent-based multimodal user interfaces us-
ing the same agent architecture used to build the back ends
of these applications. We describe these interfaces and the
larger architecture, and outline some of the applications that
have been built using this architecture and interface agents.

Sangkyu Park
Artificial Intelligence Section
Electronics and Telecommunications
Research Institute (ETRI)

161 Kajong-Dong
Yusong-Gu, Taejon 305-350 KOREA
+82 428605641
skpark@com.etri.re.kr

OVERVIEW OF OPEN AGENT ARCHITECTURE

The Open Agent Architecture (OAA) is a multiagent system
that focuses on supporting the creation of applications from
agents that were not designed to work together, thereby fa-
cilitating the wider reuse of the expertise embodied by an
agent. Part of this focus is the user interface to these ap-
plications, which can be viewed as supporting the access of
human agents to the automated agents. Key attributes of the
OAA are

e Open: The OAA supports agents written in multi-
ple languages and on multiple platforms. Currently
supported languages are C, Prolog, Lisp, Java, Mi-
crosoft’s Visual Basic and Borland’s Delphi. Cur-
rently supported platforms are PCs (Windows 3.1 and
95), Sun Workstations (Solaris 1.1 and 2.x) and SGIs.

o Distributed: The agents that compose an application
can run on multiple platforms.

e Extensible: Agents can be added to the system while
it is running, and their capabilities will become imme-
diately available to the rest of the agents. Similarly,
agents can be dynamically removed from the system
(intentionally or not).

e Mobile: OAA-based applications can be run from a
lightweight portable computer (or PDA) because only
the user interface agents need run on the portable.
They provide the user with access to a range of agents
running on other platforms.

e Collaborative: The user interface is implemented with
agents, and thus the user appears to be just another
agent to the automated agents. This greatly simplies
creating systems where multiple humans and auto-
mated agents cooperate.

10pen Agent Architecture and OAA are trademarks of SRI International. Other brand names and product names herein are trademarks and registered

trademarks of their respective holders.

o Multiple Modalities: The user interface supports hand-
writing, gesture and spoken language in addition to the
traditional graphical user interface modalities.

e Multimodal Interaction: Users can enter commands
with a mix of modalities, for example, a spoken com-
mand in which the object to be acted on is identified by
a pen gesture (or other graphical pointing operation).

The OAA has been influenced by work being done as part
of DARPA’s 13 (Intelligent Integration of Information) pro-
gram (http://isx.com/pub/I13) and Knowledge Sharing Effort
(http://www-ksl.stanford.edu/knowledge-sharing/) [13].

THE USER INTERFACE
The User Interface Agent

The user interface is implemented with a set of agents that
have at their logical center an agent called the User Inter-
face (Ul) Agent. The User Interface Agent manages the
various modalities and applies additional interpretation to
those inputs as needed. Our current system supports speech,
handwriting and pen-based gestures in addition to the con-
ventional keyboard and mouse inputs. When speech input
is detected, the Ul Agent sends a command to the Speech
Recognition agent to process the audio inputand to return the
corresponding text. Three modes are supported for speech
input: open microphone, push-to-talk, and click-to-start-
talking. Spoken and handwritten inputs can be treated as
either raw text, or interpreted by a natural language under-
standing agent.

There are two basic styles of user interface. The first style
parallels the traditional graphical user interface (GUI) for an
application: The user selects an application and is presented
with a window that has been designed for the application im-
plemented by that agent and that is composed of the familiar
GUI-style items. In this style interface, the application is typ-
ically implemented as a primary agent, with which the user
interacts, and a number of supporting agents that are used by
the primary agent, and whose existence is hidden from the
user. When text entry is needed, the user may use handwrit-
ing or speech instead of the keyboard, and the pen may be
used as an alternative to the mouse. Because the Ul Agent
handles all the alternate modalities, the applications are iso-
lated from the details of which modalities are being used.
This simplifies the design of the applications, and simplifies
adding new modalities.

In the second basic style of interface, not only is there no
primary agent, the individual agents are largely invisible to
the user, and the user’s requests may involve the cooperative
actions of multiple agents. In the systems we have imple-
mented, this interface is based on natural language (for ex-
ample, English), and is entered with either speech or hand-
writing. When the Ul Agent detects speech or pen-based
input, it invokes a speech recognition agent or handwriting
recognition agent, and sends the text returned by that agent

to a natural language understanding agent, which produces a
logical form representation of the user’s request. This logical
form is then passed to a Facilitator agent, which identifies
the subtasks and delegates them to the appropriate applica-
tion agents. For example, in our Map-based Tourist Informa-
tion application for the city of San Francisco, the user can ask
for the distance between a hotel and sightseeing destination.
The locations of the two places are in different databases,
which are managed by different agents, and the distance cal-
culation is performed by yet another agent.

These two basic styles of interfaces can be combined in a sin-
gle interface. In our Office Assistant application, the user is
presented with a user interface based on the Rooms metaphor
and is able to access conventional applications such as e-
mail, calendar, and databases in the familiar manner. In ad-
dition there is a subwindow for spoken or written natural lan-
guage commands that can involve multiple agents.

A major focus of our research is multimodal inputs, typi-
cally a mix of gesture/pointing with spoken or handwritten
language. The Ul agent manages the interpretation of the in-
dividual modalities and passes the results to a Modality Co-
ordination agent, which returns the composite query, which
is then passed to the Facilitator agent for delegation to the
appropriate application agents (described in subsequent sec-
tions).

Speech Recognition

We have used different speech recognition systems, sub-
stituting to meet different criteria. We use research sys-
tems developed by another laboratory in our organization
(http://www-speech.sri.com/) [3] and by a commercial spin-
off from that laboratory.> We are currently evaluating other
speech recognizers, and will create agents to interface to
their application programming interfaces (APIs) if they sat-
isfy the requirements for new applications being considered.

Natural Language Understanding

A major advantage of using an agent-based architecture is
that it provides simple mix-and-match for the components.
In developing systems, we have used three different natural
language (NL) systems: a simple one, based on Prolog DCG
(Definite Clause Grammar), then an intermediate one, based
on CHAT [16], and finally, our most capable research system
GEMINI [6, 7]. The ability to trivially substitute one natural
language agent for another has been very useful in rapid pro-
totyping of systems. The DCG-based agent is used during
the early stages of development because grammars are eas-
ily written and modified. Writing grammars for the more so-
phisticated NL agents requires more effort, but provides bet-
ter coverage of the language that real users are likely to use,
and hence we typically delay upgrading to the more sophis-
ticated agents until the application crosses certain thresholds
of maturity and usage.

2Nuance Corporation (formerly Corona Corp.), Building 110, 333 Ravenswood Avenue, Menlo Park, CA 94025 (domain: coronacorp.com)

Pen Input

We have found that including a pen in the user interface has
several significant advantages. First, the gestures that users
employ with a pen-based system are substantially richer than
those employed by other pointing and tracking systems (e.g.,
a mouse). Second, handwriting is an important adjunct to
spoken language. Speech recognizers (including humans)
can have problems with unfamiliar words (e.g., new names).
Users can use the pen to correct misspelled words, or may
even anticipate the problem and switch from speaking to
handwriting. Third, our personal experience is that when
a person who has been using a speech-and-gesture interface
faces an environment where speech is inappropriate, replac-
ing speech with handwriting is more natural.

Using 2D gestures in the human-computer interaction holds
promise for recreating the pen-and-paper situation where the
user is able to quickly express visual ideas while she or he
is using another modality such as speech. However, to suc-
cessfully attain a high level of human-computer cooperation,
the interpretation of on-line data must be accurate and fast
enough to give rapid and correct feedback to the user.

The gestures-recognition engine used in our application is
fully described in [9] as the early recognition process. There
is no constraint on the number of strokes. The latest eval-
uations gave better than 96% accuracy, and the recognition
was performed in less than half a second on a PC 486/50,
satisfying what we judge is required in terms of quality and
speed.

In most applications, this engine shares pen data with a hand-
writing recognizer. The use of the same medium to handle
two different modalities is a source of ambiguities that are
solved by a competition between both recognizers in order
to determine whether the user wrote (a sentence or a com-
mand) or produced a gesture. A remaining problem is to
solve a mixed input (the user draws and writes in the same
set of strokes).

The main strength of the gestures recognition engine is its
adaptability and reusability. It allows the developer to easily
define the set of gestures according to the application. Each
gesture is actually described with a set of parameters such
as the number of directions, a broken segment, and so forth.
Adding a new gesture consists of finding the description for
each parameter. If a conflict appears with an existing object,
the discrimination is done by creating a new parameter. For
a given application, as few as four parameters are typically
required to describe and discriminate the set of gestures.

We can use any handwriting recognizer compatible with Mi-
crosoft’s PenWindows.?

Modality Coordination Agent

Our interface supports a rich set of interactions between nat-
ural language (spoken, written, or typed) and gesturing (e.g.,
pointing, circling)—much richer than that seen in the put-

that-there systems. Deictic words (e.g., this, them, here) can
be used to refer to many classes of objects, and also can be
used to refer to either individuals or collections of individu-
als.

The Modality Coordination (MC) agent is responsible for
combining the inputs in the different modalities to produce a
single meaning that matches the user’s intention. Itis respon-
sible for resolving references, for filling in missing informa-
tion for an incoming request, and for resolving ambiguities
by using contexts, equivalence or redundancy.

Taking into account contexts implies establishing a hierarchy
of rules between them. The importance of each context and
the hierarchy may vary during a single session. In the actual
system, missing information is extracted from the dialogue
context (no graphical context or interaction context).

When the user says “Show me the photo of this hotel”” and
simultaneously points with the pen to a hotel, the MC agent
resolves references based on that gesture. If no hotel is ex-
plicitly indicated, the MC agent searches the conversation
context for an appropriate reference (for example, the hotel
may have been selected by a gesture in the previous com-
mand). If there is no selected hotel in the current context,
the MC Agent will wait a certain amount of time (currently
2 to 3 seconds) before asking the user to identify the ho-
tel intended. This short delay is designed to accommodate
different synchronizations of speech and gesture: different
users (or a single user in different circumstances) may point
before, during or just after speaking.

In another example, the user says ““Show me the distance
from the hotel to here”” while pointing at a destination. The
previous queries have resulted in a single hotel being focused
upon, and the MC agent resolves ““the hotel”” from this con-
text.* The gesture provides the MC agent with the referent of
“here”. Processing the resulting query may involve multiple
agents, for example, the location of hotels and sightseeing
destinations may well be in a different databases, and these
locations may be expressed in different formats, requiring
another agent to resolve the differences and then compute
the distance.

Flexible Sets of Modalities

The OAA allows the user maximum flexibility in what
modalities will be used. Sometimes, the user will be on
a computer that does not support the full range of modali-
ties (e.g., no pen or handwriting recognition). Sometimes,
the user’s environment limits the choice of modalities, for
example, spoken commands are inappropriate in a meeting
where someone else is speaking, whereas in a moving ve-
hicle, speech is likely to be more reliable than handwriting.
And sometimes, the user’s choice of modalities is influenced
by the data being entered [14].

With this flexibility, the telephone has become our low-end
user interface to the system. For example, we can use the

30ur preferred recognizer is Handwriter for Windows from Communication Intelligence Corp (CIC) of Redwood City, CA.
4User feedback about which items are in focus (contextually) is provided by graphically highlighting them.

telephone to check on our appointments, and we use the tele-
phone to notify us of the arrival and content of important
e-mail when we are away from our computers.

This flexibility has also proven quite advantageous in accom-
modating hardware failure. For example, moving the PC for
one demonstration of the system shook loose a connection
on the video card. The Ul agent detected that no monitor
was present, and used the text-to-speech agent to generate
the output that was normally displayed graphically.

In another project’s demonstration (CommandTalk), the des-
ignated computer was nonfunctional, and an underpowered
computer had to be substituted. Using the OAA’s innate ca-
pabilities, the application’s components were distributed to
other computers on the net. However, the application had
been designed and tested using the microphone on the local
computer, and the substitute had none. The solution was to
add the Telephone agent that had been created for other ap-
plications: it automatically replaced the microphone as the
input to the speech recognizer.

Learning the System

One of the well-known problems with systems that utilize
natural language is in communicating to the user what can
and cannot be said. A good solution to this is an open re-
search problem. Our approach has been to use the design
of the GUI to help illustrate what can be said: All the sim-
ple operations can also be invoked through traditional GUI
items, such as menus, that cover much of the vocabulary.

OAA AGENTS
Overview

OAA agents communicate with each other in a high-level
logical language called the Interagent Communication Lan-
guage (ICL). ICL is similar in style and functionality to the
Knowledge Query and Manipulation Language (KQML) of
the DARPA Knowledge Sharing Effort. The differences are a
result of our focus on the user interface: 1CL was designed to
be compatible with the output of our natural language under-
standing systems, thereby simplifying transforming a user’s
query or command into one that can be handled by the auto-
mated agents.

We have developed in initial set of tools (the Agent De-
velopment Toolkit) to assist in the creation of agents [11].
These tools guide the developer through the process, and au-
tomatically generate code templates from specifications (in
the style of various commercial CASE tools). These tools
are implemented as OAA agents, so they can interact with,
and build upon, existing agents. The common agent support
routines have been packaged as libraries, with coordinated
libraries for the various languages that we support.®

These tools support building both entirely new agents and
creating agents from existing applications, including legacy
systems. These latter agents are called wrappers (or trans-
ducers); they convert between ICL and the application’s API

(or other interface if there is no API).

The Facilitator Agent

In the OAA framework, the Facilitator agents play a key
role. When an agent is added to the application, it registers
its capabilities with the Facilitator. Part of this registration
is the natural language vocabulary that can be used to talk
about the tasks that the agent can perform. When an agent
needs work done by other agents within the application, it
sends a request to the Facilitator, which then delegates it to
an agent, or agents, that have registered that they can han-
dle the needed tasks. The ability of the Facilitator to han-
dle complex requests from agents is an important attribute
of the OAA design. The goal is to minimize the informa-
tion and assumptions that the developer must embed in an
agent, thereby making it easier to reuse agents in disparate
applications.

The OAA supports direct communication between applica-
tion agents, but this has not been heavily utilized in our im-
plementations because our focus has been on aspects of ap-
plications in which the role of the Facilitator is crucial. First,
we are interested in user interfaces that support interactions
with the broader community of agents, and the Facilitator is
key to handling complex queries. The Facilitator (and sup-
porting agents) handle the translation of the user’s model of
the task into the system model (analogous to how natural lan-
guage interfaces to databases handle transforming the user’s
model into the database’s schemas). Second, the Facilitator
simplifies reusing agents in new applications. If a commu-
nity of agents is assembled using agents acquired from other
communities, those agents cannot be assumed to all make
atomic requests that can be handled by other agents: simple
requests in one application may be implemented by a combi-
nation of agents in another application. The Facilitator is re-
sponsible for decomposing complex requests and translating
the terminology used. This translation is typically handled
by delegating it to another agent.

In the OAA, the Facilitator is a potential bottleneck if there
is a high volume of communication between the agents. Our
focus has been on supporting a natural user interface to a
very large community of intelligent agents, and this environ-
ment produces relatively low volume through the Facilitator.
In the CommandTalk application (discussed later), the mul-
tiagent system is actually partitioned into two communities:
the user interface and the simulator. The simulator has very
high volume interaction and a carefully crafted communica-
tion channel and appears as a single agent to the Facilitator
and the user interface agents.

Triggers

In an increasing variety of conventional applications, users
can set triggers (also called monitors, daemons or watch-
dogs) to take specific action when an event occurs. How-
ever, the possible actions are limited to those provided in

5A release of aversion of this software is planned. The announcement will appear on http://www.ai..sri.com/~0aa/.

that application. The OAA supports triggers in which both
the condition and action parts of a request can cover the full
range of functionality represented by the agents dynamically
connected to the network.

In a practical real-world example, one of the authors success-
fully used agent triggers to find a new home. The local rental
housing market is very tight, with all desirable offerings be-
ing taken immediately. Thus, you need to be among the first
to respond to a new listing. Several of the local newspa-
pers provide on-line versions of their advertisements before
the printed versions are available, but there is considerable
variability in when they actually become accessible. To au-
tomatically check for suitable candidates, the author made
the following request to the agent system: “When a house
for rent is available in Menlo Park for less than 1800 dol-
lars, notify me immediately”” This natural language request
installed a trigger on an agent knowledgeable about the do-
main of World Wide Web sources for house rental listings.
At regular intervals, the agent instructs a Web retrieval agent
to scan data from three on-line newspaper databases. When
an advertisement meeting the specified criteria is detected,
a request is sent to the Facilitator for a notify action to be
delegated to the appropriate other agents.

The notify action involves a complex series of interactions
between several agents, coordinated by the Notify and Facil-
itator agents. For example, if the user is in a meeting in a
conference room, the Notify agent first determines his cur-
rent location by checking his calendar (if no listing is found,
the default location is his office, which is found from another
database). The Notify agent then requests contact informa-
tion for the conference room, and finds only a telephone
number. Subsequent requests create a spoken version of the
advertisement and retrieve the user’s confirmation password.
When all required information is collected, the Facilitator
contacts the Telephone agent with a request to dial the tele-
phone, ask for the user, confirm his identity with password
(entered by TouchTone), and finally play the message. Other
media, including FAX, e-mail and pager, can be considered
by the Notify agent if agents for handling these services hap-
pen to be connected to the network.

DISTRIBUTED SYSTEMS
Multiple Platforms

The OAA applications that we have implemented run on a
variety of platforms, and the exact location of individual
agents is easily changed. We currently support PCs (Win-
dows 3.1 and 95) and Sun and SGI workstations. Our pri-
mary user interface platform is the PC, partly because it
currently offers better support for pen-based computing and
partly because of our emphasis on providing user interfaces
on lightweight computers (portable PCs and PDAS in near
future). PCs also have the advantage of mass-market GUI-
building packages such as Visual Basic and Delphi. A lesser
version of the user interface has been implemented under X
for UNIX workstations.

Even when the Ul is on a PC, some of the agents in the Ul
package are running elsewhere. Our preferred speech recog-
nizer requires a UNIX workstation, and our natural language
agents and Modality Coordination agent have been written
for UNIX systems.

Mobile Computing

We view mobile computing not only as people moving about
with portable computers using wireless communication, but
also people moving between computers. Today’s user may
have a workstation in his office, a personal computer at
home, and a portable or PDA for meetings. In additional,
when the user meets with management, colleagues and cus-
tomers (“customers” in the broad sense of the people who
require his services), their computers may be different plat-
forms. From each of these environments, the user should be
able to access his data and run his applications.

The OAA facilitates supporting multiple platforms because
only the primary user interface agents need to be running on
the local computer, thereby simplifying the problem of port-
ing to new platforms and modality devices. Also, since only
a minimal set of agents need to be run locally, lightweight
computers (portables, PDA, and older systems) have the re-
sources needed to be able to utilize heavyweight, resource-
hungry applications.

COLLABORATION

One of the major advantages of having an agent-based inter-
face to a multiagent application is that it greatly simplifies
the interactions between the user and the application: appli-
cation agents may interact with a human in the same way
they interact with any other agent.

This advantage is readily seen when building collaborative
systems. Perhaps the simplest form of collaboration is to
allow users to share input and output to each other’s applica-
tions. This form of cooperation is inherent in the design of
the OAA: it facilitates the interoperation of software devel-
oped by distributed communities, especially disparate user
communities (different platforms, different conventions).
We are currently integrating more sophisticated styles of col-
laboration into the OAA framework, using the synchronous
collaborative technology [5] built by another group within
our organization. In the resulting systems, humans can com-
municate with agents, agents can work with other automated
agents, and humans can interact in realtime with other hu-
mans users.

APPLICATIONS AND REUSE

Two applications, the Office Assistant and Map-based
Tourist Information have been the primary experimental en-
vironments for this research project. The agent architecture
and the specific agents developed on this research project
have proved to be so useful that they are being used by an ex-
panding set of other projects within our organization. These
other internal projects are helping us improve the documen-

tation and packaging of our toolkits and libraries, and we are
hoping to release a version in the near future.

Some of the projects adopting the OAA have been motivated
by the availability of various agents, especially the user in-
terface agents. Some projects have gone further and used
the OAA to integrate the major software components being
developed on those projects.

Office Assistant

The OAA has been used as the framework for a number
of applications in several domain areas. In the first OAA-
based system, a multifunctional “office assistant”, fourteen
autonomous agents provide information retrieval and com-
munication services for a group of coworkers in a networked
computing environment ([4]). This system makes use of a
multimodal user interface running on a pen-enabled portable
PC, and allows for the use of a telephone to give spoken com-
mands to the system. Services are provided by agents run-
ning on UNIX workstations, many of which were created by
providing agent wrappers for legacy applications.

In a typical scenario, agents with expertise in e-mail process-
ing, text-to-speech translation, notification planning, calen-
dar and database access, and telephone control cooperate to
find a user and alert him or her of an important message. The
office assistant system provides a compelling demonstration
of how new services can arise from the synergistic combi-
nation of the capabilities of components that were originally
intended to operate in isolation. In addition, as described
earlier, it demonstrates the combination of two basic styles
of user interaction — one that directly involves a particular
agent as the primary point of contact, and one that anony-
mously delegates requests across a collection of agents — in
a way that allows the user to switch freely between the two.
In the interface for this system, the initial screen portrays
an office, in which familiar objects are associated with the
appropriate functionality, as provided by some agent. For in-
stance, clicking on a wall clock brings up a dialogue that al-
lows one to interact with the calendar agent (that is, browsing
and editing one’s appointments). In this style of interaction,
even though the calendar agent may call on other agents in
responding to some request, it has primary responsibility, in
that all requests through that dialogue are handled by it.

The alternative style of interaction is one in which the user
might speak “Where will | be at 2:00 this afternoon?”. In
this case, the delegation of the request to the appropriate
agents — which is done by the User Interface agent in con-
cert with a Facilitator agent — reflects a style that is less
direct and more anonymous.

Map-based Tourist Information

In a number of domains, access to information can very natu-
rally be organized around a map-based interface. In creating
such interfaces for several different systems, we have found

the agent-based approach to multimodality to be extremely
useful. In these systems, all the components share a com-
mon interface—the map—and the fact that there are many
agents is entirely invisible to the user.

One example is a map-based system to provide tourist infor-
mation about San Francisco. Requests expressed in a vari-
ety of modalities can control the scrolling and zoom level of
the map, retrieve information about locations and distances,
display hotels or attractions meeting a user’s preferences, or
present detailed information in a variety of media about par-
ticular hotels or attractions. Where appropriate, this informa-
tion is derived and updated regularly from WWW sources.

Map-based interfaces provide a rich setting in which to ex-
plore the coordination of gesture with speech and traditional
GUI modalities. The tourist information system accommo-
dates the use of a variety of familiar pen gestures, such as
circling objects or regions, drawing arrows, X’ing positions
or objects, and striking out objects. Depending on context
and timing considerations, requests can be derived from sin-
gle gestures, multiple gestures interpreted together, spoken
or handwritten input, point-and-click, or some combination
of these operations.

For example, an arrow drawn across a map from right to left
(which itself is recognized from two or three pen strokes) is
interpreted as a request to scroll the map. The same effect
may be achieved by speaking “scroll left””. Display of hotels
can be obtained by writing or speaking ““Show hotels”, or,
perhaps, “Show hotels with a pool”. The distance between
two objects or locations may be obtained by circling, X’ing,
or clicking on each of them, and then drawing a straight line
between them. Alternatively, one can speak ““Show the dis-
tance from here to here”, while selecting two locations, or
one can write “distance” either before or after selecting two
objects.

This system, and the organization of the input recognition
agents, is described in detail in [2]. A related system is de-
scribed in [15].

CommandTalk

CommandTalk, a system in quite a different domain than
tourism, was able to make use of the same approach to
the map-based integration of speech with other modalities.®
In the CommandTalk system, currently installed at the Ma-
rine Corps Air Ground Combat Center at Twentynine Palms,
CA, a collection of OAA-enabled agents provides a spoken-
English interface to a map-based simulation of armed forces
[12]. CommandTalk has proven useful in providing realism
to scenarios used in training military commanders. The sim-
ulator is roughly 500,000 lines of code that was provided to
the interface developers. Within 2 weeks of receiving the
simulator code, they were able to demonstrate a spoken lan-
guage interface to the basic functionality of the package by
creating an agent interface to that portion of the simulator’s

6In the case of CommandTalk, gesture has not yet been a factor, but there has been an emphasis on the comprehensive use of speech, in combination with

traditional GUI modalities.

functionality and then adapting the existing user interface
agents to that domain. After the early prototype had demon-
strated the utility of the concept, a more extensive analy-
sis was conducted of the task and the commands used, and
more capable prototypes were developed. One of the sig-
nificant enhancements was the replacement of our simplest
natural language agent (DCG-based) with our most sophisti-
cated (based on GEMINI [6, 7]).

Summarization of Conversation

A system that summarizes conversations provided a novel
opportunity to use two instances of a speech recognition
agent, in conjunction with a single instance of a text process-
ing agent ([10]). In this system, MIMI, two Japanese speak-
ers engage in a conversation, such as, for example, an inquiry
about room availability at a hotel. Each speaker is on a sepa-
rate microphone, and each microphone feeds into a separate
speech recognition agent. The output streams of these agents
are both fed into a text processing agent, adapted especially
for this task. Following the completion of the conversation,
the text processing agent is able to print out a summary of
what was discussed and agreed upon.

In constructing this system, as with CommandTalk, the abil-
ity to reuse and reconfigure preexisting user interface agents,
in conjunction with newly created agents, afforded a sig-
nificant savings in system construction time. The English-
language speech recognizer was replaced with a Japanese-
language version, and the natural language understanding
agent that generated commands to the rest of the system was
replaced by an agent that analyzed and stored the summary
of the conversation.

Air Travel Information System

Web-based interfaces can readily be integrated into an agent-
based system. At the same time that the agent system ben-
efits from the universal accessibility of a Web interface, the
HTML paradigm is extended and strengthened by the use of
persistent interface agents to maintain the state of a sequence
of interactions.

In one such system, user interface agents have been used to
provide a Web/telephone interface to a spoken language Air
Travel Information System (ATIS) [1]. In addition to speech
recognition and natural language understanding agents, this
system involves a telephone control agent, a response gener-
ation agent, and a User Interface agent. The initial version
was based on HTML. The current version uses Java to pro-
vide more incremental feedback to the user.”

Multi-robot Control

SRI’s family of mobile robots have been integrated as agents
within the OAA framework. As such, robots may access,
and be accessed by, existing OAA services, including cor-
porate databases, text-to-speech generation, and telephone
interfaces. In the Robot Competition at the 1996 AAAI con-

It may be accessed at http://www-speech.sri.com/demos/atis.html

ference, OAA’s capabilities were used by the SRI team to
coordinate the activities of three robots. SRI won the Office
Navigation task, completing it much faster than any of the
other competitors (who were using only single robots) [8].
The multimodal map application was minorly modified to
provide monitoring and control of the robots as they navi-
gate a building. The screen displays a blueprint-style map of
the area in which the robots operate, and the positions of the
movable objects (robots and the objects that they can manip-
ulate) are updated in realtime. Although the input modalities
are the same as the earlier application (Map-based Tourist
Information), there are noticeable differences. First, the in-
puts are predominantly commands, instead of information
retrieval (queries), Second, some pen gestures mean differ-
ent things: for example, with the robots, an arrow is used
to indicate orientation (“‘Robot one, face this direction”) or
direction (“Move this way”).

Emergency Response System

Another system for which a map-based interface has been
useful is a prototype system of pen-based mobile computing
units for use in the field by teams responding to a disaster
such as an earthquake. In this system, a database of maps
is available on each mobile unit (to avoid having to down-
load sizable bitmaps), but information about specific loca-
tions and structures is stored in a centralized set of databases.
This information can be retrieved and/or updated as appro-
priate by each mobile unit. The centralized database server
also receives updates from hospitals and clinics as to their
status, capacity, and patients being treated.

For example, as a response team learns the condition of the
streets and structures in its region, it is able to record this in-
formation on the map-based interface, using point-and-click
in combination with handwriting or typing, and then upload
the data to the central databases. When a street or structure
is found to be unsafe, that information can be relayed to all
mobile units.

In the case in which an injured person is found, the system
allows for the entry of some basic facts about the injury. Fol-
lowing that, an agent operating on the central server makes
a determination of what hospital or clinic would be most ap-
propriate for the person, based on current status reports, and
this recommendation is then returned to the response team.
This system has both Japanese-language and English-
language interfaces.

CONCLUSIONS

The OAA has proven to be useful in constructing sophisti-
cated systems because it provides the flexibility to combine
applications that were not originally envisioned as a pack-
age. The OAA differs from much of the other research on
distributed agents in its focus on providing multimodal user
interfaces to systems assembled from disparate agents. This
focus results in a tradeoff which is a major limitation of this

architecture: while the Facilitator agent is key to coopera-
tion between independently developed agents, it is a poten-
tial bottleneck in systems where agents need high-volume,
low-delay interactions (discussed in The Facilitator Agent).
In one existing application (and one under consideration), a
composite approach has provided a viable solution for this
limitation.

ACKNOWLEDGMENTS

This paper is based on work that was supported in part by
a contract to SRI from the Electronics and Telecommunica-
tions Research Institute (Korea). Philip R. Cohen (now at the
Oregon Graduate Institute) was project leader until August
1994, and was responsible for many of the design decisions
in the systems described here. Any opinions expressed in
this paper are strictly those of the authors.

REFERENCES
1 Harry Bratt, John Dowding, and Kate Hunicke-
Smith. The SRI telephone-based ATIS system. In

Proc. of the ARPA Spoken Language System Technol-
ogy Workshop, Austin, Texas, January 1995. Also
http://www.ai.sri.com/natural-language/projects/arpa-
sls/apps.html.

2 Adam Cheyer and Luc Julia. Multimodal maps: An
agent-based approach. In Proc. of the International
Conference on Cooperative Multimodal Communication
(CMC/95), Eindhoven, The Netherlands, May 1995.
Also http://www.ai.sri.com/~o0aa/ + “Bibliography”.

3 Michael Cohen, Hy Murveit, Jared Bernstein, Patti Price,
and Mitchel Weintraub. The DECIPHER speech recog-
nition system. In IEEE ICASSP, pages 77-80, 1990.

4 Philip R. Cohen, Adam J. Cheyer, Michelle Wang, and
Soon Cheol Baeg. An open agent architecture. In O. Et-
zioni, editor, Proc. of the AAAI Spring Symposium Se-
ries on Software Agents, pages 1-8, Stanford, California,
March 1994. American Association for Artificial Intelli-
gence.

5 Earl Craighill, Martin Fong, Keith Skinner, Ruth
Lang, and Kathryn Gruenefeldt. SCOOT: An object-
oriented toolkit for multimedia collaboration. In
Proc. of the ACM MULTIMEDIA 94 Conference,
pages 41-49, San Francisco, CA, October 1994.
Also http://www.std.sri.com/public/ftp/ ACE/Papers/-
SCOOT94.ps.Z.

6 John Dowding, J. Mark Gawron, Douglas Appelt,
John Bear, Lynn Cherny, Robert Moore, and Douglas
Moran. GEMINI: A natural language system for spoken-
language understanding. In Proc. of the 31st Annual

10

11

12

13

14

15

16

Meeting of the Association for Computational Linguis-
tics, pages 54-61, Ohio State University, Columbus,
Ohio, 22-26 June 1993.

John Dowding, Robert Moore, Francois Andry, and
Doug las Moran. Interleaving syntax and semantics in an
efficient bottom-up parser. In Proc. of the 32nd Annual
Meeting of the Association for Computational Linguis-
tics, pages 110-116, New Mexico State University, Las
Cruces, New Mexico, 27 June — 1 July 1994.

Didier Guzzoni, Adam Cheyer, Luc Julia, and Kurt
Konolige. Report on the SRI Pioneer Robot Team at
AAAI-96 Robotics Competition and Exhibition (tenta-
tive title). To appear in Al Magazine, Winter 1996 or
Spring 1997.

Luc Julia and Claudie Faure. Pattern recognition and
beautification for a pen based interface. In ICDAR’95,
pages 58-63, Montreal, Canada, 1995.

Megumi Kameyama, Goh Kawai, and lsao Arima.
A real-time system for summarizing human-human
spontaneous spoken dialogues. In Proc. of the
Fourth International Conference on Spoken Lan-
guage Processing (ICSLP-96), October 1996. Also
http://www.ai.sri.com/~megumi/ + “My publications”.

David L. Martin, Adam J. Cheyer, and Gowang-Lo Lee.
Agent development tools for the Open Agent Architec-
ture. In Proc. of the First International Conference on
the Practical Application of Intelligent Agents and Multi-
Agent Technology, pages 387—-404, London, April 1996.
The Practical Application Company Ltd.

Robert Moore, John Dowding, Harry Bratt, J.Mark
Gawron, Yonael Gorfu, and Adam Cheyer. Com-
mandtalk: A spoken-language interface for battlefield
simulation. Technical report, Artificial Intelligence
Center, SRI International, 21 June 1996. Also
http://www.ai.sri.com/natural-language/projects/arpa-
sls/apps.html.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Sen-
ator, and W. Swartout. Enabling technology for knowl-
edge sharing. Al Magazine, 12(3), 1991.

S. L. Oviatt. Pen/voice: Complementary multimodal
communication. In Proc. of Speech Tech’92, pages 238—
241,1992.

S. L. Oviatt. Multimodal interfaces for dynamic interac-
tive maps. In Proc. of CHI 96, Vancouver, Canada, 1996.
Assoc. for Computing Machinery.

F. C. N. Pereira. Logic for Natural Language Analysis.
PhD thesis, U. of Edinburgh, 1983.

